84 research outputs found

    Investigating the Energy Dissipation Capability of Solid Piles Breakwater

    Get PDF
    In terms of the importance of coastal zones, this research started with the motivation of proposing an innovative coastal protection measure (solid piles, evenly distributed and staggered, breakwaters) and investigating their capability of energy dissipation, experimentally. Physical models of solid piles breakwater were designed and constructed. Experimental flume was arranged to test these models and measuring devices were arranged. Contributing parameters (i.e. wave height, period, steepness, piles arrangements and diameters) were varied, Based on the discussions and within the experimented range of parameters, it was clear that solid piles possess an enormous capability of dissipating the wave energy by a percentage that ranged between 20 to 75% which is considered to be significant amount from the coastal engineering point of view

    Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data

    Get PDF
    The integration of remote sensing data of suspended particulate matter (SPM) into numerical models is useful to improve the understanding of the temporal and spatial behaviour of SPM in dynamic shelf seas. In this paper a generic method based on the Ensemble Kalman Filtering (EnKF) for assimilating remote sensing SPM data into a transport model is presented. The EnKF technique is used to assimilate SPM data of the North Sea retrieved from the MERIS sensor, into the computational water quality and sediment transport model, Delft3D-WAQ. The satellite data were processed with the HYDROPT algorithm that provides SPM concentrations and error information per pixel, which enables their use in data assimilation. The uncertainty of the transport model, expressed in the system noise covariance matrix, was quantified by means of a Monte Carlo approach. From a case study covering the first half of 2003, it is demonstrated that the MERIS observations and transport model application are sufficiently robust for a successful generic assimilation. The assimilation results provide a consistent description of the spatial-temporal variability of SPM in the southern North Sea and show a clear decrease of the model bias with respect to independent in-situ observations. This study also identifies some shortcomings in the assimilated results, such as over prediction of surface SPM concentrations in regions experiencing periods of rapid stratification/de-stratification. Overall this feasibility study leads to a range of suggestions for improving and enhancing the model, the observations and the assimilation scheme. © 2011 Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Netherlands

    Chemical and Microbiological Contamination in Limpet (Patella spp.) of the Portuguese Coast

    Get PDF
    Coastal production areas can be impacted by anthropogenic contamination from urban, agro-industrial and leisure activities. Some contaminants, such as chemical substances might also have a telluric origin. Non filter feeding univalve mollusks, such as limpets, which are collected in rocky shores either for sale or for auto-consumption, are very appreciated in Portugal, but have been excluded from provisions on the classification of production areas, although can present relevant contamination. Thus, the aim of this study was to assess the microbiological and toxic metal contaminations in limpets (Patella spp) of the Portuguese coast, taking into account the production area and seasonal variation, and comparing their contamination levels with those occurring in bivalve mollusk indicator species, mussel (Mytilus edulis). The risks associated to the consumption of limpet meals were also assessed. For that, microbial total and fecal levels and cadmium, lead and mercury contents in limpets and mussels samples from three coastal areas over several months were analyzed based on standard methodologies. Contents of mercury and lead in limpets from the three areas studied, were always below the limits of 0.50 mg kg-1 and 1.5 mg kg-1 allowed by the EU, respectively. Regarding cadmium, levels in limpet were always above the limit of 1.0 mg kg-1, reaching about 3.0 mg kg-1 in some samples. These values probably indicate contamination from telluric origin (soil or rocks) in the coastal studied areas. Results indicated that microbiological contamination of fecal origin was low and in general below the detection level. Contamination levels did not show a clear seasonal pattern. The two mollusk species, limpets and mussels, differed statistically in all contaminants analyzed, being cadmium the most of concern, and always higher in limpets than in mussel samples. Thus, the potential risk associated with limpet consumption, taking into account the cadmium tolerable weekly intake (TWI), was investigated, being possible to reach a reliable recommendation of less than a monthly meal of 160 g. As recreational picking of limpets is common in Portugal, official 4recommendations of maximum periodic human consumption should be published and enforcement increased in forbidden areasinfo:eu-repo/semantics/acceptedVersio

    Integrating inland and coastal water quality data for actionable knowledge

    Get PDF
    Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making.Additional co-authors: Anders Knudby, Camille Minaudo, Nima Pahlevan, Ils Reusen, Kevin C. Rose, John Schalles and Maria Tzortzio

    A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling

    Get PDF
    This study examined the pathological complete response (pCR) rate and safety of sequential gemcitabine-based combinations in breast cancer. We also examined gene expression profiles from tumour biopsies to identify biomarkers predictive of response. Indian women with large or locally advanced breast cancer received 4 cycles of gemcitabine 1200 mg m−2 plus doxorubicin 60 mg m−2 (Gem+Dox), then 4 cycles of gemcitabine 1000 mg m−2 plus cisplatin 70 mg m−2 (Gem+Cis), and surgery. Three alternate dosing sequences were used during cycle 1 to examine dynamic changes in molecular profiles. Of 65 women treated, 13 (24.5% of 53 patients with surgery) had a pCR and 22 (33.8%) had a complete clinical response. Patients administered Gem d1, 8 and Dox d2 in cycle 1 (20 of 65) reported more toxicities, with G3/4 neutropenic infection/febrile neutropenia (7 of 20) as the most common cycle-1 event. Four drug-related deaths occurred. In 46 of 65 patients, 10-fold cross validated supervised analyses identified gene expression patterns that predicted with ⩾73% accuracy (1) clinical complete response after eight cycles, (2) overall clinical complete response, and (3) pCR. This regimen shows strong activity. Patients receiving Gem d1, 8 and Dox d2 experienced unacceptable toxicity, whereas patients on other sequences had manageable safety profiles. Gene expression patterns may predict benefit from gemcitabine-containing neoadjuvant therapy

    Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    Get PDF
    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership in September 2016. TheMCES assessments were used to (1) addressmultiple policy objectives simultaneously, (2) interpret EU-wide policies to smaller scales and (3)inform local decision-making. Most of the studies did inform decision makers, but only in a fewcases, the outputswere applied or informed decision-making. Significant limitations among the 11assessments were the absence of shared understanding of the ES concept, data and knowledgegaps, difficulties in accounting for marine social–ecological systems complexity and partial stakeholderinvolvement. The findings of the expert panel call for continuous involvement of MCES ‘endusers’, integrated knowledge onmarine social–ecological systems, defining thresholds to MCES useand raising awareness to the general public. Such improvements at the intersection of science,policy and practice are essential starting points toward building a stronger science foundationsupporting management of European marine ecosystems

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system
    corecore